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X-ray Analysis of Ferroelectric Domains in the Paraelectric Phase of NaNO,

By Marisa Caxut*
Section of Crystal Thermodynamics,t Department of Crystal Physics, C.S.1.C., Madrid, Spain

AND Rorr HoSEMANN
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin-Dahlem, Germany

(Received 8 July 1963)

It is well known that a paraelectric phase of NaNO, crystals exists above 160 °C. Laue patterns
with filtered Cu radiation obtained at 185 °C show, besides thermodiffuse spots, diffuse but relatively
sharp layer lines orthogonal to the polar axis along ! =2, 3, 4. It is shown that they can be explained
by ca. 30 A long small domains with ferroelectric structure (so called “cigarrillos”) statistically
orientated parallel or antiparallel to the polar axis. This positional disorder with correlations can
never explain the observed continuous intensity of the first layer line near 002, even if correlated
librations are introduced. Calculations and Fraunhofer patterns of two-dimensional models with
statistical point structures prove that the domains oscillate parallel to the polar axis as rigid entities.
The diffuse spots 030, 040 can furthermore be explained by cross-vibrating linear segments of the
ferroelectric domains. Much of the analysis is carried out with the help of the @-function calculated
and experimentally produced from the models with a two-dimensional folding machine.

1. Introduction

Ferroelectricity in NaNO: was revealed by the
measurements of dielectric properties carried out by
Sawada, Nomura, Fujii & Yoshida (1958), and since
also the ferroelectric phase is stable at room tempera-
ture, interest in a closer knowledge of the mechanism
of the ferroelectric—paraelectric transition has grown
rapidly. Many papers have been published in connec-
tion with NaNO: and a number of characteristics
have been determined.

The crystal symmetry of NaNOz at room tempera-
ture is orthorhombic, space group Imm2; its structure
was determined by Ziegler (1931) and subsequently
refined by Carpenter (1952, 1955), Truter (1954) and
Kay & Frazer (1961). The unit cell contains two NaNO.
molecules and has a polar axis along the [001] direc-
tion (Carpenter’s unit-cell choice) which is also the
direction of spontaneous polarization. The atomic
arrangement in the unit cell at room temperature is
shown schematically in Fig. 1(a). The lattice constants
are ao=2356, bo=>5-56 and co=>538 A. The crystal is

Table 1. NaNOsg, ferroelectric phase. Atomic para-
meters for the (100) projection
(Kay & Frazer, 1961)

Y z
Na . 0 0-587
N 0 0-1180
o} 0-1941 0
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Fig. 1. NaNO,. Projection of the structure on (100). (a) Ferro-
electric phase. (b) Paraelectric phase (after Strijk &
MacGillavry, 1943).

composed, presumably not in the most closely-packed
state, of Na* ions and NOj ions alternately disposed
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along the [001] axis. The NOjy ion is a symmetric non-
linear group and lies parallel to the (100) plane. The
bisectrix of the angle ONO is aligned to the +¢ axis.
The atomic coordinates of the refined structure at
room temperature are given in Table 1

Strijk & MacGillavry (1943) found a phase transi-
tion in NaNO: at about 158 °C by piezoelectric as well
as X-ray studies. The crystal gains above the Curie
point a mirror plane perpendicular to the ¢ axis (Fig.
15), centers of symmetry are therefore obtained and
the space group becomes Immm.

The exact mechanism of the phase transition still
remains uncertain, but it is generally believed that the
orientation of NO, ions takes the most important role
in the problem.

Since the NO: groups are asymmetric, Strijk &
MacGillavry (1943) had to conclude that the mirror
plane that appears in the paraelectric phase has a
statistical nature. These authors (Strijk & MacGillavry,
1946) were unable to determine whether the NOz groups
were rotating or frozen into two symmetric pos:tmn‘&
along the polar axis of the room-temperature structure.

Recently, Kay, Frazer & Ueda (1962) have refined
the (100) projection of the paraelectric structure by
neutron diffraction studies, and from comparison
between the calculated Fop; values of the models with
hindered rotation of the NO: groups and with posi-
tional disorder, they are in favour of the disordered
model. The discrepancy index obtained by these
workers is R=0-077. Table 2 gives the ¥ z atomic
parameters of NaNO: at 185 °C according to Kay,
Frazer & Ueda (1962).

Table 2. NaNOaq, paraelectric phase at 185 "C.
Atomic parameters for the (100) projection*®

KJ z

Na 0 -5401
N 0 00725
(0] 0-1920 —(-0416

* Positions in Tmmm: § Na in 4(g), } N in 4(g), and } O

in 8(I).

2. X-ray experimental

Single crystals of NaNO: were obtained by slow
evaporation of an aqueous solution; they were elon-
gated along [100].

X-ray Laue and oscillation photographs were taken
at room temperature and at temperatures above the
transition point in a Unicam camera, with a nickel
furnace attached to the camera. X-ray Cu-filtered
radiation was used, at the condition 20 mA, 40 kV.
The exposure time of the Laue photographs was 2h,
and the thickness of the crystals used about 1 mm,
The temperature was measured with a copper—
constantan thermocouple.

Several Laue and oscillation photographs of the
series at room temperature were repeated, and Laue
and oscillation photographs of the paraelectric phase
at 185 °C were obtained at identical positions.

THE

PARAELECTRIC PHASE OF NaNO,
X-ray diffuse scattering of the ferroelectric phase of NaNO,
Laue photographs of the ferroelectric phase of
NaNO: (Fig. 2a and 3a) show the typical thermal
diffuse pattern of ionie crystals, very similar to that of
NaNOs (Amords, Canut & de Acha, 1960), NH.NO,
(Alonso, Canut & Amords, 1958), efc. The st rong spots
are associated with reciprocal lattice points of |F,
strong. The diffuse domains have been plotted in the
reciprocal levels [100]y and [100];.

Fig. 2. NaNO,. Laue photographs. [100] vertical. Cu-filtered
.\ radmr:rnn X-ray beam at 20° from [001]. (a) Ferro-
electric phase (20 °C). (b) Paraelectric phase (185 °C).

Fig. 3. NaNO,. Laue photographs. [100] vertical. Cu-filtered
X-radiation, X-ray beam at 30° from [001]. (a) Ferro-
electric phase (20 °C). (b) Paraelectric phase (185 °C).

[100]o level: Fig. 4(a) shows the diffuse scattering
connected with Okl reciprocal lattice points. The
strongest diffuse domains are associated with the
reciprocal lattice points 002, 040, 022, 024 and 031
with |F,| > 14, This shows the correlation between
strong diffuse nc.lttelmg and |F,[2. The diffuse spots
are elongated in the direction of the corresponding
crystallographic plane.

The extinction condition b+ k+1=2n+ 1 is observed
by the diffuse scattering and only some very scant
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and weak diffuse streaks connecting some reciprocal
lattice points appear in the Laue photographs.

It must be emphasized that the diffuse scattering
of the ferroelectric phase is of thermal origin and cannot
be associated with any ferroelectric effect as was
suggested by Mitsui (1958). No correlation between
the imaginary part B of the structure factor F'=4 +:B
and the corresponding diffuse intensity domains has
been found. For instance, the Bragg intensity 004 has
By, =0 and the associated diffuse intensity is strong.

X-ray diffuse scattering of the paraelectric phase of NaNO2

The diffuse scattering appearing in the Laue and
oscillation photographs of the paraelectric phase
clearly shows disorder diffuse scattering superimposed
on the temperature diffuse scattering. Laue photo-
graphs of the ferroelectric and paraelectric phases of
sodium nitrite are compared in Figs. 2 and 3. At this
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point it is interesting to emphasize the striking
ressemblance between this disorder diffuse scattering
and that of phase II of NH4;NO; discovered by Amorés,
Alonso & Canut (1958).

The disorder scattering is distributed in sheets
normal to [001], and thus combines some of the ther-
mal diffuse domains centered at 002, 022, 004, 024,
013 or 013, 015 or 015.

In addition, two diffuse bands centered at the
reciprocal lattice points 030 (forbidden) and 040 can
also be seen. These bands are parallel to the polar
axis. At room temperature some thermal diffuse
scattering does appear, but no disorder scattering
(Figs. 2a, 3a, 4a).

In Fig. 4(6) we have plotted the disordered diffuse
scattering as obtained from the Laue photographs and
in Fig. 4(c) the total diffuse scattering of the paraelec-
tric phase.
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Fig. 4. NaNO,. Diffuse scattering domains in [100],.
(c) Disorder plus thermal scattering plotted (185 °C).

(b) Only disorder scattering plotted (185 °C).
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(a) Ferroelectric phase (20 °C).
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In addition to the photographic method, diffracto-
metric measurements have been made in connection
with the critical scattering studies at the transition
point. The experiments given by Mendiola (1964)
prove the existence of a sharp diffuse intensity sheet
in the 002 plane. Along the reciprocal row =2, dis-
order diffuse scattering above the Curie point is
continuous from 002 up to at least 032 (see Fig. 10).

3. Optical

In order to understand the formation of the disorder
connected with the paraelectric phase, we have
decided to use an optical analogue.

An optical diffractometer and a folding apparatus
described by Hosemann (1959, 1962) were used to
obtain the Fraunhofer patterns and the ¢ functions
of the different hypotheses.

The scale of the drawings of the different models was
1 A=4mm and at least 20 x 20 unit cells were drawn,
t.e. more than 3200 atoms. The radius R of the ‘point-
like’ atoms was 1-2 mm, hence & of a lattice cell. All
atoms had the same shape, hence the same atomic
scattering factor:

fo~fi~f% = exp (—nbR)?

which reached half of its maximum value near the
reflexions 060, 044, 006. In this way, the Fraunhofer
pattern was comparable with the experimental X-ray
results obtained with Cu radiation. The mask for the
Fraunhofer pattern was a microfilm of the drawing at
scale 1 A=10-'mm. The two masks for the Q func-
tions had approximately a scale of 1 A=4-10-! mm.
Firstly, a model of the ferroelectric phase was made,
by using the y, 2z atomic coordinates and unit-cell
dimensions given by Carpenter (1955). Fig. 5 shows
the model of the ferroelectric phase (@) and the cor-
responding equator of the reciprocal lattice, obtained
with the optical diffractometer (). Four lattice cells
of the @ function (in this case of the Patterson func-
tion) are shown in (¢). The @ function is defined as the
time and space average convolution square of the
electron density under discussion. For ideal periodic
structures it degenerates into the (unbounded) Pat-
terson function. For point structures it has to do with
the correlation functions of statistical mechanics (see
for details Hosemann & Bagchi, 1962). For a struc-
ture g(x) not changing with time, the @ function is

defined by
2 (]
@=el)= Se(y)e(y—x)dy-

The optical folding machine had only a small
aperture, so that a domain with a radius of about 8 A
could only be obtained in the ‘vector space’. Since the
model corresponds to an ideal crystal lattice, the
central motif in the @ function has the same shape as
the others. In (d) the central region of the calculated
Patterson function is shown.

FERROELECTRIC DOMAINS IN THE PARAELECTRIC PHASE OF NaNO,

In the study of the paraelectric phase, two models
were made, first with only NO: groups, i.e. without
introducing the Na atoms into the structure. If we
define the NOs groups as positive (NOZ) or negative
(NOz) when the vertex of the group points in the upper
or lower direction, a model with statistical random
distribution along the polar axis means that the same
probability is given to the NO: groups of pointing
in the positive or negative direction.

Fig. 6(a) (left) shows the Fraunhofer pattern of such
a model. Fig. 6(b) (left) gives the corresponding optical
@ function. The pattern at the origin of the @ function

2 2
corresponds to gxo, and all other peaks are gno,. The
Fourier transform of the difference between these two
peaks of the @ function

2 2 Z
PNO,— PNO, = AQNO2 (1)

gives rise to the continuous diffuse regions appearing
in the Fraunhofer pattern of Fig. 6(a)

2
%’(A@Noz) = A|Fno,2. )

Fig. 6(a) (right) shows the isodiffusion lines cor-
responding to 4|Fxo,/? calculated in terms of*

lass = A|Fno,|? = |Fno,/2— | Fro,? (3)

The contours correspond to values of 4|Fxo,|? of
2-5, 5:0 and 7-5. In the figure, the reciprocal lattice
points have been weighted in terms of {Fno,|2.

Fig. 6(b) (right) shows the central region of the
calculated @ function. The central motif and the other
motifs have the weights

1
1
bo- 3
1 1 1 1
1 - T A T
1 3 1
1 3 1 and 5 - 5 - 2
11 bbb o4
SO |
2 2
respectively.

A new model was drawn by introducing correlations
of the NO: groups along the polar axis. The statistical
unit of this model consists of a row of five NOF or NOy
groups, i.e. of positive or negative ‘cigarrillos’. The
Fraunhofer patterns and @ functions of this model are
shown in Fig. 7.

The @ function of this model (Fig. 7b) also shows

2 2
the peaks of two kinds, gNOZ and gno,, but here the
2

~
peak of the origin, gno,, is repeated along the polar
axis, since correlations have been introduced. The

* Details of calculations are given in § 4.
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Fig. 5. Ferroeleetric phase of NaNO,, (100) projection. (a) Fig. 6. (a) The diffraction patterns and (b) the @ function of
Model of the ideal erystal lattice. (&) Optical reciprocal the NO, groups in random distribution along the polar
lattice. (e) Optical Patterson function. (d) Caleulated axis. Left: optical. Right: calculated.

Patterson function.
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Fig. 7. (a) The diffraction patterns and (b) the @ function of Fig. 8. (a) The diffraction patterns and (6) the @ function ot
the NO, groups. Correlations along the polar axis have the (100) projection of NaNO,. Random distribution of NO,
been introduced. Left: optical. Right: calculated. groups, but a statistical positional correlation to the Na

ions along the polar axis. Left: optical. Right: calculated.

[To face p. 976
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Fig. 9, (a) The diffraction patterns and (b) the @ function of
the (100) projection of NaNQ,. Correlations along the polar
axis have been introduced. Left: optical. Right: calculated.

(a) (b)

Fig. 11. (a) The @-function and (b) Fraunhofer pattern of the
paraelectric phase of NIIN()zl (100) projection. Rigid body
motion of the ‘eigarrillos’ along the polar axis (with

F_"IODH ~ (-2 A\]

(9) (b)

Fig. 12. (a) The Q-function and (b) Fraunhofer pattern of the
paraelectric phase of NaNO,, (100) projection. Rigid body
motion of the positive and negative statistical domains
along the polar axis (tijge;; ~ 0-20 A) plus transverse motion
(tifo10) ~ 0-20 A) of quadratical segments.
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2

=
remaining peaks correspond to gno,. Instead of (I)
now the remaining difference term is given by

EJ — E/
[4 9N02] . 2 8cig . 4)

The convolution product (symbol =) is defined both
in Fourier and in physical space and given by

Ga(b) Ge(b) =
S G1(c) Ga(b—c)dc; ga(X) ga(x) = Sm(y) ga(x—y)dy .

Scig(X) is the shape function of the ‘cigarrillo’ and

o0}

2(x) = X P(xz—nc) (5)

n=—o0

a one-dimensional lattice peak function along the polar
¢ axis. The vector x expands the physical space and
has the orthogonal components x; 2 &3, respectively
along z, y, 2.

The diffuse intensity will be given by the Fourier
transform of this difference term

Last = (1/¢) [4|Fxo,?]. (Z- [Sesgl?) (6)

where Z(b) is the Fourier transform of z(x) and
Seig(b) the Fourier transform of seig(x). If all cigarrillos
have the same length Lcig, each consisting of Ncig NO:
groups, the shape factor [Scig|? of the cigarrillo is given

by
1 Lci 2 |
| Seigl? =(Sl_nﬂl; )
Tt0g

27272
~ Leig? exp L —_ 71%L—°'g} (7)

and hence
1 ~—~ 22 2
L (@l8el®) = Niiggexp[—”—?f_g (ba—% J ®)

The reciprocal vector b is defined by Ewald’s construc-
tion

=, ©

s, 8o being unit vectors of the direction of the diffracted
and primary X-ray beam, A wavelength and b1, bs, ba
the orthogonal components of b.

From the width of the diffuse lines in direction b3
one can easily calculate by equations (6)-(8) the
average length Lz of the cigarrillo-like domains.

Fig. 7(a) (right) shows the calculated isodiffusion
lines in terms of equation (6). Fig. 7(b) (right) re-
produces the central region of the calculated @ func-
tion.

The next step was to make the models of the real
structure, i.e. by introducing the Na atoms. Two
models, analogous to the ones with only NOs groups,
were drawn in terms of the atomic coordinates given
by Kay, Frazer & Ueda (1962), one with statistical
random distribution of positive and negative groups
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along the polar axis, and the other with correlations
along the polar axis. However, to some extent correla-
tions in both models for the Na atoms were introduced.
This was because, even in the model with random
distribution of the NOs groups, statistical positive and
negative domains appeared, since inside a statistical
domain of positive NOz groups the Na atoms were all
drawn as positive. The same criterion was taken for the
negative domains. Finally, within the boundaries
of the statistical domains, the Na atoms were located
at half the distance of the two NO; groups, i.e. at 030
and $00. Thus we have the following four constella-
tions of our statistical model, each with the probability

L.
i

Fig. 8 shows the Fraunhofer patterns and ¢ func-
tions of the paraelectric phase of NaNOz, when such
random distribution is assumed. The peak at the

2 2
~ ~

center of the @ function corresponds to gwo,+gna
and again is different from the other peaks. Repeated
by lattice translations 010, 04}, 001, 020, 034, - - - there

2 2
—~ —~
appear the motifs gno,+pona. At half translations

040,013, 031, - - - there appear the motifs 2[91\;02&;],
except in the direction of the polar axis where at

001 and 00} we have 2(QNZ)?QNa), which is not equal

~

to 2(gxo,ena).
Now instead of (1) the difference term of the
@ function shows a hump at (000), given by
2 2 2
—~ —~ —~
A1p = Agno,+Apna
and two other humps at (001) and (00}) given by

2

—~

A2 = 2[ow0, 0% — @N0y0N] -

Figure 8(b) (left) clearly demonstrates the dif-
ference of the structure of the two humps at (003})
and (00%) from that of the other mixed humps

2[ono,0na) at 01} 041 030 etc.
We now have four different motifs, two with
correlations, two without correlations

at 000 at 00+ 3}
I 1 3 & 3
1 4 1 PO S
1 1 F 3
¥ 3 3
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at 01}, 030, - - - at 001,033, - - -

3 !
i bo- o3
ERE S S
oo -1 - 4
R NN
SRR b=

] i

The diffuse scattering will be given by Fourier

transformation of these two difference terms. Taking

2 )

into account that the 4,0 humps lie at 004 and 004,
we get

Isis =4 IFf\TOz] +4 ]F%al +24 IFNoz-FNal coshsc. (10)

The calculated isodiffusion lines in terms of the
above equation are shown in Fig. 8(a) (right). As
shown in § 4, the first two terms of equation (10) give
rise to diffuse background as in Fig. 6, where a broad
diffuse hump lies in the area of (034). The last term
of equation (10) has negative values for the layers
1=1, 3 in the domains of this hump. So this hump in
Fig. 8(a) is split into two peaks. The correlation
between adjacent Na and NO: groups, introduced
into the model of Fig.7, though relatively weak,
produces a large effect on the background scattering,
which can easily be analysed.

A striking resemblance can easily be seen between
the continuous diffuse regions appearing in the Fraun-
hofer pattern and the X-ray diffuse scattering of
molecular crystals, which also can be computed in
terms of a difference Fourier transform approach
(Amords, Canut & de Acha, 1960). The fact that the
X.ray scattering of the paraelectric phase of NaNO;
shows diffuse sheets distributed normal to the polar
axis proves that a random distribution of the NOz and
the above mentioned small correlation of the Na
groups cannot account for the observed X-ray diffuse
scattering. Some kind of correlation must be considered
along the polar axis, which acts over larger distances
than the correlation introduced in Fig. 8. From the
widths of the X-ray diffuse sheets, it is easily seen
that a statistical unit consisting of about five NOz and
Na groups along the polar axis must exist. Such long
rod-like domains with inner correlation (cigarrillos) were

taken for the next model. Its Fraunhofer pattern and
corresponding @ function are represented in Fig. 9. The
@ function only differs from the ¢ function of the last
model in the fact that the peaks at the origin and at
00} and 00} are repeated about five times by lattice
translation along the polar axis, owing to the introduc-
tion of correlations. Since within each cigarrillo the
positions 003, 00 of Na atoms of model Fig. 8 do not
occur, the last term of equation (10) must be multipled
by 2*.

* See § 4 for further details.

FERROELECTRIC DOMAINS IN THE PARAELECTRIC PHASE OF NaNO,

The Fraunhofer pattern of Fig. 9(a) clearly shows
the desired thin sheets, lying along rows of /=integer
in the areas where the continuous diffuse sheets of the
random model appeared. The diffuse intensity can be
expressed in terms of the following equation:

It = (1/¢) [A|Fno, |2+ 4| Fxal?
+44|Fxo, . Fxa| cos wbsc]. Z{Seig|? . (11)

The isodiffusion lines calculated by the above formula
are shown in Fig. 9(a) (right).

As shown in § 4, for 1=2, 4, 5, A(Fxo,Fxa) has
positive values for k~3 and negative values for £=0.
Hence equation (8) gives rise to strong diffuse lines
at [=2,4 in agreement with the observed X-ray
diffuse scattering (Fig. 4b). However, the main dif-
ference is seen around the reciprocal lattice point 002,
004, where in the Fraunhofer pattern I according to
(11) is zero and the Laue photographs show diffuse
scattering. In order to check this point, X-ray dif-
fractometric measurements were made along =2,
both at room temperature and at 185°C (Fig. 10).
The experimental fact can easily be seen that at
185 °C the diffuse scattering for !=2 is continuous
from 002 up to at least 032 and is not zero at the
forbidden reciprocal lattice points 012 and 032. Near
to the Bragg reflexions 002 and 022 we observe the
overlap of typical thermal diffuse scattering and
disorder scattering.

’A
400
300
2001
100}
e N 11
002 012 022 032 ,*

Fig. 10. Diffractometric measurements of the diffuse scattering
from 002 to 032 at 20 °C and 185 °C. The experimental
points measured are plotted as O and A at room and
high temperature, respectively (after Mendiola, 1964).

As shown in § 4, positional disorder never gives rise
to diffuse layers at 002, 004. Uncorrelated thermal
vibrations and librations of the single Na and NO:

groups never produce diffuse layers. Correlated libra-
tions of the groups within a cigarrillo domain never
produce a strong enough diffuse layer line near 002.
Transforming the observed Igi; into the difference
term hump of the unknown ¢ function, one finds out
directly that the whole cigarrillos must oscillate as
more or less rigid entities. Such motion moreover does
not contradict the structural data of Kay & Frazer,
since they found, from intensity data of reflexions at
185 °C, oscillation amplitudes for Na, N and O of
about 0-2 A.
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A model was made with correlations along the polar
axis, with the statistical unit cigarrillos as in the model
of Fig. 9, but in this case subject to rigid body motions
along the polar axis, with a mean vibrational amplitude
of 43=0-20 A, as detected from neutron structural
data. The @ function of this model is shown in Fig.
11(e), and the Fraunhofer pattern in Fig. 11(b). We
can see in (b) that by means of this motion diffuse
scattering through 002 appears. This new component
of the diffuse intensity function is given by the
following expression:

It = (1/¢)[|Fxo,|2+ | Fral?
+2[Fno,|. | Fxa| cos mbsc]. Z{Seg|2(1— D). (12)

Di=exp[—4n?bia3] is the Debye factor of this
anisotropic thermal motion of the whole cigarrillo;
the bracket gives the average structure factor of a
cigarrillo. Since this one-dimensional structure has not
the extinction rules of the three-dimensional structure
of Fig. 1, (12) gives rise to intensities at ‘forbidden’

} [ __,T_
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Fig. 13. A model with statistically distributed 25 A long
positive and negative cigarrillos. Domains of cigarriilos
with the same sign occur statistically, which in the average
consist of 5-10 cigarrillos. These domains as a whole are
displaced statistically along the polar axis by +0-02 A (a).
Quadratical segments of the domains moreover are sta-
tistically displaced along the b axis by +0-02 A (b).
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reflexions. If bundles of cigarrillos would oscillate as
rigid entities, we should have to replace the bracket of
(12) by the ordinary structure factor of ferroelectric
NaNO: and the one-dimensional lattice factor Z by a
two- or three-dimensional one. Then at 012, contrary
to Fig. 10, no diffuse layer scattering could occur.
Hence the existence of linear entities oscillating as
units is proved.

From the X-ray disorder diffuse scattering plotted
in Fig. 4(b) it can be seen that, apart from the
continuous diffuse lines of /= const., there also appears
some disorder diffuse scattering in the b* axis, sur-
rounding the reciprocal lattice points 030 and 040.

An attempt was next made to obtain weak diffuse
scattering located at 0kO, as given by the X-ray
experiments. A model was made where vibrations
normal to the polar axis were also introduced. The
whole statistical positive and negative domains were
again subjected to a rigid body motion up or down
(again @3=0-2 A). In addition, each domain was
divided into statistical (100) layers (so called ‘seg-
ments’). These segments were chosen so that they all
had a rectangular shape (Fig. 13b). Then they were
subjected to a transverse rigid motion with #2=0-2 A.
The @ function and the Fraunhofer pattern of such a
model are shown in Fig. 12. These twist-like vibrations
of the elongated statistical domains have given rise
for the first time to diffuse scattering in the b* axis,
around 050 and 060.

The following equation can be used to compute the
corresponding Fraunhofer pattern:

Itz = (1/bc) [Fno,(1 + exp [7i(k +1))]+ Fxa(exp [7ik]
+ exp [7il])|2. Z2|Sseg|2. (1— D) . (13)

The bracket includes the ordinary structure factor
and produces intensities only at k+I!=o0dd. Z. is the

Fig. 14. The original point atom model which produces tle
Fraunhofer pattern of Fig. 12(b). It contains the individual
ferroelectric ‘oscillating” domains with ‘twisting’ segments
of Fig. 13, frozen in their instantaneous positions.
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two-dimensional lattice factor of all reflexions
kl.|Sseg|? is the shape factor average of the segments.
In Fig. 12(b) it has a globular shape, since the segments
were globular too. Its width corresponds to the mean
diameter of a segment width and in our statistical
model was ~12 A. The Debye factor

D? = exp [—4n®bia3]

of the horizontal segment oscillation depends only on
bs. The factor 1—Dj is zero near the 001 reflexions,
which are all sharp, depending on the size of the whole
model (~200 A). But all other reflexions in Fig. 12
are surrounded by the diffuse spots of equation (13).
The crystalline reflexions themselves are proportional
to D2 and can be seen in Fig. 12(b) only for all weak
reflexions and the reflexions (0/) and (11) (20).

The observed X-ray diffuse spots appear at 030 and
040 and have a shape elongated in the polar direction.
From this one directly learns that the segments,
contrary to the model of Fig. 12, consist of single
horizontal rows of NOz—Na groups. Hence the bracket
of (13) must be replaced by

|Fxo,+ Fxa exp [7ik]|? (13q)

and the two-dimensional lattice factor by an one-
dimensional lattice factor of a horizontal linear lattice.
Then automatically the diffuse spot at 030 with a
layer-like shape will appear as in Fig. 4(b).

If the vibrating segments consist of severalhorizontal
NaNQs rows, the structure factor of (13) destroys the
diffuse hump at 030. Since 030 exists we know that
the segments are single horizontal rows.

Tanisaki (1961) carried out X-ray experiments just
above the Curie point. The Akl reflexions show satellites
at about (A +3, kl); this he explains by antiphases (up
and down structures) in the direction of the a axis,
where about four groups are positive, and four
negative, alternately. Since in our X-ray photographs
the satellites no longer exist, this indicates that the
correlation along the a axis is totally destroyed. So the
cigarrillos consist also in the direction of the a axis
of single statistically distributed rows, as fully
established by the three-dimensional diffuse sheets
normal to the polar axis, discussed above.

It follows from these results that the analysis of the
diffuse scattering in the paraelectric phase of NalNO:
can be given by a relative simple formula with three
terms:

Tasg = In+Fra+ Innx (14)

The first term depends on positional disorder only, the
next on thermal vibrations of rod-like domains parallel
to the polar axis, and the third on transversal vibra-
tions of layer-like segments of domains in the [010]
direction. The three terms are given by equations (11),
(12), and (13) respectively, when the bracket of (13)
must be replaced by (13a). In the following section
they are calculated in detail, including correlated
librations.

FERROELECTRIC DOMAINS IN THE PARAELECTRIC PHASE OF NaNOQ,

4. Calculation of correlated librations

The @ function of a single fixed NOz group consists

of 7 discreet humps (see the central region of Fig. 6b).
2 2

At (000) we have pn+2p0, at the four positions

(+yo0,28—20) (+ yo,20—2x) we have pxgo and at the

2

~
two positions +2yo we have go*. If the NO: group
oscillates and librates, the outer six humps change
their positions. If H(y—¥,2—2) is the statistical
distribution of the positional vector (y,z) around its
average position (7, 2), Hxo the distribution function
of the four humps, Hoo that of the two humps, and
Koo and Kno the Fourier transforms of these func-
tions, Koo(b) =% Hoo(X), Kno(b) = § Hno(x), then the
Fourier transform of the averaged @ function of the
NO: group is given by

IFN02|2 = ]FN|2+2IFOI2+4|FN| IFo[KNo(b) [0 5] (82??0)
cos 83(zo — Zn) + 2| Fo|2Koo(b) cos 2s270  (15)

where sp=2nbs; s3=2mbs.

The averaged electron distribution of a ‘positive’
NOs: group, on the other hand, is given by three humps,
one with the px density lying at zy, the two others
with pgo at (+yo, 20). The humps of a ‘negative’
NO; group lie at—2zx and (+yo, —zo). Introducing
librations, the go humps must be convoluted with
Ho statistics, the px hump with Hx statistics. If
Ko, Kx are their Fourier transforms, we get

|Fxo,| = |Fx|Kx(b)

x €08 $3Zn + 2| Fo| Ko(b) cos s2fjo cos s3zo. (16)

Hence the difference term, equation (3), is given by

AF§O2 = |Fx]2(1 —K%\v(b) cos283zn) + 2| Fol2[1 + Koo(b)
x €08 28270 —2K%(b) cos? safjo cOs? 8320
+ 4]F x| | Fo|[Kno(b) cos s2ifo cos s3(Zo — zn)
— Kn(b)Ko(b) cos s2ijo cOs s3Zo COS $32ZN] . (1N
If no librations occur, all factors K(b)=1 and we
obtain

AF21\'02 = IFle sin2 s3Zy +4‘Fo|2 cos2 S2yo sin2 83zo
+ 4|F'x| |Fol €os S2¥o sin §3Zo sin $32x . (18)
Equating the atomic scattering factors F%, F§ to
unity, we obtain the formula which we have used to
calculate the isodiffusion lines of Fig. 6(a) (right).
Introducing librations, the K factors of equation
(17) with increasing |b| decrease from unity to zero.
At large |b| values, one finds scattering like the gaseous
type,
AF%o, = P3| +2|F3). (19)

* 00(X), on(X), oNa(X) are the electron-density distribu-
tions of O, N and Na at zero point energy, if the centers
of the atoms lie at x=0, p~(X)=g(—X).
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According to the experimental results of Kay,
Frazer & Ueda (1962) oscillation amplitudes not larger
than %4=0-2 A are possible. Hence the K factors

K ~exp[ — 272%262) (20)

near the reflexion 002 have values so near to unity,
that equation (18) holds as a good approximation and,
hence, the isodiffusion lines of Fig. 6(a) (right) are
correct for librating groups too, and can never explain
the diffuse layer intensity near 002 (Fig. 10).

Things remain the same if we take into account
librating Na ions. Then the second term of equation
(11) is given by

AF%, = |F4.|(1—K%Db) cos? s274)

where + Z,=0-04 (Table 2) is the mean position of Na
relative to the lattice point (00}) and K.(b) the
Fourier transform of the libration statistics Hg(X)
around the positions Zz..

Finally we calculate the last term of equation (11).
Inside of a librating positive (negative) cigarrillo,
Hyx, Hao may be the libration statistics of the
distance vectors Xna — XN, Xna—Xo around their mean
positions, and Kan, Kao their Fourier transforms.
Then the @ function has at 00t} two humps (see
Fig. 80) which consist of two density distributions

(1)

g@g@NA(z + (Zna— Zo)) at the positions + (Zna— Zn)
and four distributions Q;v;g’f}m (¥ £ Fo, 2+ (Zna— Zo0))
at the positions + §o, +(Zna— Zo).

The other corresponding humps of the @ function
at 0, +4,0; 0, £1, +{ have twelve humps, four at
+ Zna + 2x with the density distribution %QQQ?H;\H A
and eight at + Zna+ Zo+ Ho with the distribution

%Q;{:Q’(;H’O\H a. The difference of the Fourier trans-
forms of the humps at (003) and (030) is therefore

24 |FN02FN8,| = 2[FN8,| |Fnl(KNA(b) cos Sa(zNa,— EN)
— Kn(b)Kna(b) cos $3Zna COS S3ZN)
+ 4|FN3,[ |F0| €os S29o [KAo(b) cos 83(ZNa—20)
— Kna(b)Ko(b) cos s3Zna COS S3Zo] (22)
If no librations ocecur, all K factors are equal to
unity and we obtain
2A]FN02FNa[ = 2|FN3| IFNI sin s3Zna sin s3Zn
+ 4[Fxa| | Fo| sin s3Zwa sin s3Zo cos s2§o.  (23)
Since at 00} and 00I of the @ function such a dif-
ference term exists, we have to multiply (23) by 2

cos mbac. Introducing the lattice factor Z and shape
factor S, of the cigarillos, we finally have equation

AC17—64
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(11) which was used to calculate the isodiffusion lines
of Fig. 9(a). In the model of Fig. 8, half of the Na ions
are at the position zna=0-5. Then equation (23)
must be multiplied by cos zzbsc and we obtain equation
(10), which was used to calculate Fig. 8(a) (right).

Since according to Table 2, in a positive domain
ZNa= +0-04, Zy= +0-07, Zo= —0-04, the first term of
(23) is positive, the second negative. The same holds
for negative domains. Hence the last term of equa-
tion (11) for k ~ 4 3is positive for layerlinesl=2, 4,---
and negative for 1=3, 5. In Fig. 9(a) (right), the layer
lines [=2, 4 therefore, are strong near k= +3, while
the layer line I= + 5 is strong for k=0.

Introducing librations of any degree, one easily can
see from equations (17), (21), (22), that no diffuse
layer line can arise near 002. To obtain it, the whole
cigarrillos must oscillate, as described in § 3.

The authors wish gratefully to acknowledge the
valuable discussions and encouragement of Prof.
J. L. Amords and to express thanks to Friulein Engel
for assistance with the Fraunhofer patterns and op-
tical @ functions.
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